Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.108.442
Filtrar
1.
PLoS One ; 19(4): e0300545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558075

RESUMO

Short tandem repeat (STR) variation is an often overlooked source of variation between genomes. STRs comprise about 3% of the human genome and are highly polymorphic. Some cause Mendelian disease, and others affect gene expression. Their contribution to common disease is not well-understood, but recent software tools designed to genotype STRs using short read sequencing data will help address this. Here, we compare software that genotypes common STRs and rarer STR expansions genome-wide, with the aim of applying them to population-scale genomes. By using the Genome-In-A-Bottle (GIAB) consortium and 1000 Genomes Project short-read sequencing data, we compare performance in terms of sequence length, depth, computing resources needed, genotyping accuracy and number of STRs genotyped. To ensure broad applicability of our findings, we also measure genotyping performance against a set of genomes from clinical samples with known STR expansions, and a set of STRs commonly used for forensic identification. We find that HipSTR, ExpansionHunter and GangSTR perform well in genotyping common STRs, including the CODIS 13 core STRs used for forensic analysis. GangSTR and ExpansionHunter outperform HipSTR for genotyping call rate and memory usage. ExpansionHunter denovo (EHdn), STRling and GangSTR outperformed STRetch for detecting expanded STRs, and EHdn and STRling used considerably less processor time compared to GangSTR. Analysis on shared genomic sequence data provided by the GIAB consortium allows future performance comparisons of new software approaches on a common set of data, facilitating comparisons and allowing researchers to choose the best software that fulfils their needs.


Assuntos
Genoma Humano , Repetições de Microssatélites , Humanos , Repetições de Microssatélites/genética , Software , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala
2.
PLoS One ; 19(4): e0296995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558084

RESUMO

Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Threonyl t-RNA synthetase (ThrRS) is one of the enzymes involved in this pathway, and it has been validated as an anti-malarial drug target. Here, we present 9 structurally diverse low micromolar Plasmodium falciparum ThrRS inhibitors that were identified using high-throughput virtual screening (HTVS) and were verified in a FRET enzymatic assay. Salicylic acid-based compound (LE = 0.34) was selected as a most perspective hit and was subjected to hit-to-lead optimisation. A total of 146 hit analogues were synthesised or obtained from commercial vendors and were tested. Structure-activity relationship study was supported by the crystal structure of the complex of a salicylic acid analogue with a close homologue of the plasmodium target, E. coli ThrRS (EcThrRS). Despite the availability of structural information, the hit identified via virtual screening remained one of the most potent PfThrRS inhibitors within this series. However, the compounds presented herein provide novel scaffolds for ThrRS inhibitors, which could serve as starting points for further medicinal chemistry projects targeting ThrRSs or structurally similar enzymes.


Assuntos
Antimaláricos , Malária , Treonina-tRNA Ligase , Humanos , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Escherichia coli/genética , Relação Estrutura-Atividade , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Ácido Salicílico/farmacologia , RNA de Transferência
3.
Cancer Res ; 84(7): 950-952, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558131

RESUMO

Acute myeloid leukemia (AML) is one of the most prevalent blood cancers, characterized by a dismal survival rate. This poor outcome is largely attributed to AML cells that persist despite treatment and eventually result in relapse. Relapse-initiating cells exhibit diverse resistance mechanisms, encompassing genetic factors and, more recently discovered, nongenetic factors such as metabolic adaptations. Leukemic stem cells (LSC) rely on mitochondrial metabolism for their survival, whereas hematopoietic stem cells primarily depend on glycolysis. Furthermore, following treatments such as cytarabine, a standard in AML treatment for over four decades, drug-persisting leukemic cells exhibit an enhanced reliance on mitochondrial metabolism. In this issue of Cancer Research, two studies investigated dependencies of AML cells on two respiratory substrates, α-ketoglutarate and lactate-derived pyruvate, that support mitochondrial oxidative phosphorylation (OXPHOS) following treatment with the imipridone ONC-213 and the BET inhibitor INCB054329, respectively. Targeting lactate utilization by interfering with monocarboxylate transporter 1 (MCT1 or SLC16A1) or lactate dehydrogenase effectively sensitized cells to BET inhibition in vitro and in vivo. In addition, ONC-213 affected αKGDH, a pivotal NADH-producing enzyme of the TCA cycle, to induce a mitochondrial stress response through ATF4 activation that diminished the expression of the antiapoptotic protein MCL1, consequently promoting apoptosis of AML cells. In summary, targeting these mitochondrial dependencies might be a promising strategy to kill therapy-naïve and treatment-resistant OXPHOS-reliant LSCs and to delay or prevent relapse. See related articles by Monteith et al., p. 1101 and Su et al., p. 1084.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Citarabina/farmacologia , Ciclo do Ácido Cítrico , Lactatos , Recidiva
4.
J Pineal Res ; 76(3): e12950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558122

RESUMO

Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.


Assuntos
Melatonina , Glândula Pineal , Animais , Glândula Pineal/metabolismo , Genes Homeobox , Melatonina/metabolismo , Roedores/genética , Roedores/metabolismo , Fatores de Transcrição/metabolismo , Ritmo Circadiano
5.
Cancer Res ; 84(7): 953-955, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558128

RESUMO

Personalized vaccines directed to tumor mutations have recently gained significant momentum. On the basis of the concept of stimulating T-cell responses against neoantigens encoded by a tumor's host of personal mutations, these vaccines utilize genome or exome sequencing, mutation calling, and epitope prediction followed by manufacturing of a customized vaccine for each patient. In their 2012 Cancer Research publication, Castle and colleagues provided evidence that vaccinating with long peptide vaccines encompassing neoantigens can generate robust immune responses and induce antitumor activity in a mouse B16F10 melanoma. This approach, harnessing the exquisite specificity of mutations to the tumor and thus providing an effective target for cancer vaccines, was subsequently shown to be safe and immunogenic in a series of small first in man trials in patients with melanoma. The field has accelerated and expanded substantially over the last 5 years, propelled by increasing evidence for vaccine-mediated clinical efficacy, leading to ongoing registrational trials using personalized RNA neoantigen vaccines in patients with melanoma and several other malignancies. See related article by Castle and colleagues, Cancer Res 2012;72:1081-91.


Assuntos
Vacinas Anticâncer , Melanoma , Neoplasias , Humanos , Animais , Camundongos , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/genética , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Mutação , Imunoterapia
6.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558188

RESUMO

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Assuntos
Medula Óssea , Relógios Circadianos , Camundongos , Animais , Medula Óssea/metabolismo , Fotoperíodo , Ritmo Circadiano/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Relógios Circadianos/genética
7.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558237

RESUMO

The p24 family of proteins have been regarded as cargo receptors for endoplasmic reticulum (ER) to Golgi transport; however, their precise functions have yet to be revealed. In this issue, Pastor-Pareja and colleagues (https://doi.org/10.1083/jcb.202309045) show that the interaction of these proteins with Tango1 is critical for their localization at the ER exit site (ERES) and efficient transport of secretory proteins in Drosophila.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Drosophila , Retículo Endoplasmático , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Environ Microbiol ; 26(4): e16617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558266

RESUMO

Sunlight penetrates the ice surfaces of glaciers and ice sheets, forming a water-bearing porous ice matrix known as the weathering crust. This crust is home to a significant microbial community. Despite the potential implications of microbial processes in the weathering crust for glacial melting, biogeochemical cycles, and downstream ecosystems, there have been few explorations of its microbial communities. In our study, we used 16S rRNA gene sequencing and shotgun metagenomics of a Svalbard glacier surface catchment to characterise the microbial communities within the weathering crust, their origins and destinies, and the functional potential of the weathering crust metagenome. Our findings reveal that the bacterial community in the weathering crust is distinct from those in upstream and downstream habitats. However, it comprises two separate micro-habitats, each with different taxa and functional categories. The interstitial porewater is dominated by Polaromonas, influenced by the transfer of snowmelt, and exported via meltwater channels. In contrast, the ice matrix is dominated by Hymenobacter, and its metagenome exhibits a diverse range of functional adaptations. Given that the global weathering crust area and the subsequent release of microbes from it are strongly responsive to climate projections for the rest of the century, our results underscore the pressing need to integrate the microbiome of the weathering crust with other communities and processes in glacial ecosystems.


Assuntos
Camada de Gelo , Microbiota , Camada de Gelo/microbiologia , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Regiões Árticas
9.
Glob Chang Biol ; 30(4): e17227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558300

RESUMO

Methods using genomic information to forecast potential population maladaptation to climate change or new environments are becoming increasingly common, yet the lack of model validation poses serious hurdles toward their incorporation into management and policy. Here, we compare the validation of maladaptation estimates derived from two methods-Gradient Forests (GFoffset) and the risk of non-adaptedness (RONA)-using exome capture pool-seq data from 35 to 39 populations across three conifer taxa: two Douglas-fir varieties and jack pine. We evaluate sensitivity of these algorithms to the source of input loci (markers selected from genotype-environment associations [GEA] or those selected at random). We validate these methods against 2- and 52-year growth and mortality measured in independent transplant experiments. Overall, we find that both methods often better predict transplant performance than climatic or geographic distances. We also find that GFoffset and RONA models are surprisingly not improved using GEA candidates. Even with promising validation results, variation in model projections to future climates makes it difficult to identify the most maladapted populations using either method. Our work advances understanding of the sensitivity and applicability of these approaches, and we discuss recommendations for their future use.


Assuntos
Florestas , Pseudotsuga , Adaptação Fisiológica/genética , Genômica , Mudança Climática
10.
Cancer Med ; 13(7): e7041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558366

RESUMO

BACKGROUND: Up to 70% of suspected Lynch syndrome patients harboring MMR deficient tumors lack identifiable germline pathogenic variants in MMR genes, being referred to as Lynch-like syndrome (LLS). Previous studies have reported biallelic somatic MMR inactivation in a variable range of LLS-associated tumors. Moreover, translating tumor testing results into patient management remains controversial. Our aim is to assess the challenges associated with the implementation of tumoral MMR gene testing in routine workflows. METHODS: Here, we present the clinical characterization of 229 LLS patients. MMR gene testing was performed in 39 available tumors, and results were analyzed using two variant allele frequency (VAF) thresholds (≥5% and ≥10%). RESULTS AND DISCUSSION: More biallelic somatic events were identified at VAF ≥ 5% than ≥10% (35.9% vs. 25.6%), although the rate of nonconcordant results regarding immunohistochemical pattern increased (30.8% vs. 20.5%). Interpretation difficulties question the current utility of the identification of MMR somatic hits in the diagnostic algorithm of suspected LS cases.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Mutação em Linhagem Germinativa , Reparo de Erro de Pareamento de DNA/genética
11.
Environ Microbiol ; 26(4): e16609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558489

RESUMO

The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.


Assuntos
Termotolerância , Wolbachia , Animais , Masculino , Drosophila/fisiologia , Drosophila simulans/genética , Wolbachia/genética , Fertilidade
12.
Compr Rev Food Sci Food Saf ; 23(3): e13336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558497

RESUMO

Fish inevitably face numerous stressors in growth, processing, and circulation. In recent years, stress-related change in fish muscle quality has gradually become a research hotspot. Thus, the understanding of the mechanism regarding the change is constantly deepening. This review introduces the physiological regulation of fish under stress, with particular attention devoted to signal transduction, gene expression, and metabolism, and changes in the physiological characteristics of muscular cells. Then, the influences of various stressors on the nutrition, physical properties, and flavor of the fish muscle are sequentially described. This review emphasizes recent advances in the mechanisms underlying changes in muscle quality, which are believed to be involved mainly in physiological regulation under stress. In addition, studies are also introduced on improving muscle quality by mitigating fish stress.


Assuntos
Peixes , Estado Nutricional , Animais , Peixes/genética , Peixes/metabolismo , Músculos
13.
Physiol Plant ; 176(2): e14266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558467

RESUMO

Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.


Assuntos
Arachis , Plântula , Arachis/genética , Plântula/genética , Cloreto de Sódio , Multiômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
14.
Environ Microbiol ; 26(4): e16621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558504

RESUMO

The Candidate Phyla Radiation (CPR) encompasses widespread uncultivated bacteria with reduced genomes and limited metabolic capacities. Most CPR bacteria lack the minimal set of enzymes required for peptidoglycan (PG) synthesis, leaving it unclear how these bacteria produce this essential envelope component. In this study, we analysed the distribution of d-amino acid racemases that produce the universal PG components d-glutamate (d-Glu) or d-alanine (d-Ala). We also examined moonlighting enzymes that synthesize d-Glu or d-Ala. Unlike other phyla in the domain Bacteria, CPR bacteria do not exhibit these moonlighting activities and have, at most, one gene encoding either a Glu or Ala racemase. One of these 'orphan' racemases is a predicted Glu racemase (MurICPR) from the CPR bacterium Candidatus Saccharimonas aalborgenesis. The expression of MurICPR restores the growth of a Salmonella d-Glu auxotroph lacking its endogenous racemase and results in the substitution of l-Ala by serine as the first residue in a fraction of the PG stem peptides. In vitro, MurICPR exclusively racemizes Glu as a substrate. Therefore, Ca. Saccharimonas aalborgensis may couple Glu racemization to serine and d-Glu incorporation into the stem peptide. Our findings provide the first insights into the synthesis of PG by an uncultivated environmental bacterium and illustrate how to experimentally test enzymatic activities from CPR bacteria related to PG metabolism.


Assuntos
Isomerases de Aminoácido , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Racemases e Epimerases , Bactérias/metabolismo , Ácido Glutâmico/metabolismo , Serina
15.
Cancer Med ; 13(7): e7148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558536

RESUMO

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
16.
Pan Afr Med J ; 47: 25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558553

RESUMO

Introduction: diarrheal infections in young children below five years and food animals are caused by diarrheagenic Escherichia coli strains. The study focused on understanding the association between DEC pathotypes in children below five years and food animals to establish the possibility of zoonotic transmission. Methods: samples from 150 children who presented with diarrhea at the Kisumu County Hospital and 100 stool samples from food animals were collected and processed using culture methods. Molecular identification of the pathotypes was assayed using a primer-specific polymerase chain reaction that targeted the six virulence genes related to the diarrheagenic Escherichia coli pathotypes. Results: one hundred and fifty-six study subjects (100 children samples and 56 food animals) samples were positive for E. coli polymerase chain reaction detection revealed a prevalence of (23%) among children below five years and a prevalence of (20%) among the food animals. Children samples showed Enteroaggregative Escherichia coli, having high phenotypic frequency of (12%) followed by Enterotoxigenic Escherichia coli, (5.3%) and Enteropathogenic Escherichia (3.3%) the least being mixed infections Enteroaggregative/Enterotoxigenic Escherichia coli and Enteroaggregative/Enteropathogenic Escherichia coli with (1.3%) respectively. The food animals found in children homesteads were detected to harbor pathogenic strains of E. coli. Enteropathogenic Escherichia coli was the most prevalent pathotypes detected in cattle (13%) followed by Enterotoxigenic Escherichia coli detected in goats at (4%) and poultry at (3%). Conclusion: presence of diarrheagenic Escherichia coli in food animals could serve as reservoirs of transmitting these bacteria to children below five years.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Criança , Humanos , Animais , Bovinos , Pré-Escolar , Prevalência , Quênia/epidemiologia , Infecções por Escherichia coli/diagnóstico , Escherichia coli Enteropatogênica/genética , Diarreia/epidemiologia , Diarreia/microbiologia
17.
Front Immunol ; 15: 1272351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558795

RESUMO

In recent years, oncolytic viruses have emerged as promising agents for treating various cancers. An oncolytic virus is a non-pathogenic virus that, due to genetic manipulation, tends to replicate in and cause lysis of cancerous cells while leaving healthy cells unaffected. Among these viruses, vaccinia virus is an attractive platform for use as an oncolytic platform due to its 190 Kb genome with a high capacity for encoding therapeutic payloads. Combining oncolytic VV therapy with other conventional cancer treatments has been shown to be synergistic and more effective than monotherapies. Additionally, OVV can be used as a vector to deliver therapeutic payloads, alone or in combination with other treatments, to increase overall efficacy. Here, we present a comprehensive analysis of preclinical and clinical studies that have evaluated the efficacy of oncolytic vaccinia viruses in cancer immunotherapy. We discuss the outcomes of these studies, including tumor regression rates, overall survival benefits, and long-term responses. Moreover, we provide insights into the challenges and limitations associated with oncolytic vaccinia virus- based therapies, including immune evasion mechanisms, potential toxicities, and the development of resistance.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Vírus Vaccinia/genética , Neoplasias/terapia , Neoplasias/genética , Imunoterapia
18.
Front Cell Infect Microbiol ; 14: 1321886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558853

RESUMO

Cryptococcosis is a life-threatening invasive fungal infection with significantly increasing mortality worldwide, which is mainly caused by Cryptococcus neoformans and Cryptococcus gattii. These two species complexes have different epidemiological and clinical characteristics, indicating the importance of accurate differential diagnosis. However, the clinically used culture method and cryptococcal capsular antigen detection couldn't achieve the above goals. Herein, we established a novel duplex flap probe-based isothermal assay to identify the Cryptococcus neoformans and Cryptococcus gattii within 1 hour. This assay combined the highly sensitive nucleic acid isothermal amplification and highly specific fluorescence probe method, which could effectively distinguish the sequence differences of the two species complexes using two different fluorescence flap probes in a single reaction system. This novel method showed excellent detection performance with sensitivity (10 copies/µL each) and specificity (100%) compared to traditional culture and sequencing methods. Furthermore, we applied this method to spiked clinical samples, 30 cerebrospinal fluids and 30 bronchoalveolar lavage fluids, which kept good detection performance. This novel rapid duplex flap probe-based isothermal assay is a promising and robust tool for applications in differential diagnosis of the Cryptococcus neoformans and Cryptococcus gattii in clinical settings, especially when clinical suspicion for cryptococcal disease is high and epidemiological studies.


Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Cryptococcus neoformans/genética , Cryptococcus gattii/genética , Criptococose/diagnóstico , Criptococose/microbiologia , Antígenos de Fungos , Líquido da Lavagem Broncoalveolar
19.
Front Cell Infect Microbiol ; 14: 1308742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558852

RESUMO

Background: Growing evidence has shown that gut microbiome composition is associated with Biliary tract cancer (BTC), but the causality remains unknown. This study aimed to explore the causal relationship between gut microbiota and BTC, conduct an appraisal of the gut microbiome's utility in facilitating the early diagnosis of BTC. Methods: We acquired the summary data for Genome-wide Association Studies (GWAS) pertaining to BTC (418 cases and 159,201 controls) from the Biobank Japan (BBJ) database. Additionally, the GWAS summary data relevant to gut microbiota (N = 18,340) were sourced from the MiBioGen consortium. The primary methodology employed for the analysis consisted of Inverse Variance Weighting (IVW). Evaluations for sensitivity were carried out through the utilization of multiple statistical techniques, encompassing Cochrane's Q test, the MR-Egger intercept evaluation, the global test of MR-PRESSO, and a leave-one-out methodological analysis. Ultimately, a reverse Mendelian Randomization analysis was conducted to assess the potential for reciprocal causality. Results: The outcomes derived from IVW substantiated that the presence of Family Streptococcaceae (OR = 0.44, P = 0.034), Family Veillonellaceae (OR = 0.46, P = 0.018), and Genus Dorea (OR = 0.29, P = 0.041) exerted a protective influence against BTC. Conversely, Class Lentisphaeria (OR = 2.21, P = 0.017), Genus Lachnospiraceae FCS020 Group (OR = 2.30, P = 0.013), and Order Victivallales (OR = 2.21, P = 0.017) were associated with an adverse impact. To assess any reverse causal effect, we used BTC as the exposure and the gut microbiota as the outcome, and this analysis revealed associations between BTC and five different types of gut microbiota. The sensitivity analysis disclosed an absence of empirical indicators for either heterogeneity or pleiotropy. Conclusion: This investigation represents the inaugural identification of indicative data supporting either beneficial or detrimental causal relationships between gut microbiota and the risk of BTC, as determined through the utilization of MR methodologies. These outcomes could hold significance for the formulation of individualized therapeutic strategies aimed at BTC prevention and survival enhancement.


Assuntos
Neoplasias do Sistema Biliar , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias do Sistema Biliar/genética , Causalidade
20.
Yale J Biol Med ; 97(1): 67-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559462

RESUMO

Background: Adverse outcomes from gestational diabetes mellitus (GDM) in the mother and newborn are well established. Genetic variants may predict GDM and Artificial Intelligence (AI) can potentially assist with improved screening and early identification in lower resource settings. There is limited information on genetic variants associated with GDM in sub-Saharan Africa and the implementation of AI in GDM screening in sub-Saharan Africa is largely unknown. Methods: We reviewed the literature on what is known about genetic predictors of GDM in sub-Saharan African women. We searched PubMed and Google Scholar for single nucleotide polymorphisms (SNPs) involved in GDM predisposition in a sub-Saharan African population. We report on barriers that limit the implementation of AI that could assist with GDM screening and offer possible solutions. Results: In a Black South African cohort, the minor allele of the SNP rs4581569 existing in the PDX1 gene was significantly associated with GDM. We were not able to find any published literature on the implementation of AI to identify women at risk of GDM before second trimester of pregnancy in sub-Saharan Africa. Barriers to successful integration of AI into healthcare systems are broad but solutions exist. Conclusions: More research is needed to identify SNPs associated with GDM in sub-Saharan Africa. The implementation of AI and its applications in the field of healthcare in the sub-Saharan African region is a significant opportunity to positively impact early identification of GDM.


Assuntos
Diabetes Gestacional , Gravidez , Recém-Nascido , Feminino , Humanos , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Diabetes Gestacional/epidemiologia , Inteligência Artificial , África Subsaariana/epidemiologia , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA